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ABSTRACT: A “build/couple/pair” pathway for the systematic
synthesis of structurally diverse small molecules is presented.
The Petasis 3-component reaction was used to synthesize anti-
amino alcohols displaying pairwise reactive combinations of
alkene moieties. Upon treatment with a ruthenium alkylidene-
catalyst, these dienes selectively underwent ring-closing meta-
thesis reactions to form 5- and 7-membered heterocycles and
cyclic aminals via a tandem isomerization/N-alkyliminium
cyclization sequence.
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In the wake of recent years’ discoveries in human genomics,
the hunt for small molecule probes with unique biological

properties has been intensified in academic laboratories.
Affordable screening technologies relying, at least in part, on
commercial compound collections now enable life science
researchers to rapidly and routinely identify small molecule
leads for biological investigation. However, to advance
biological probe discovery,1 it is becoming increasingly
accepted that screening collections should include more
novel, synthetically tractable molecules of sufficient structural
diversity.2 In this context, innovative synthetic strategies have
been proposed for the systematic generation of compound
libraries.3 To more effectively facilitate hit-to-lead processes,
such as those encountered during early stage probe develop-
ment, synthetic concepts that prioritize molecular optimizability
more stringently are needed. By emphasizing the access to all
stereochemical variants of structurally complex small molecule
scaffolds as an optimal coherent design principle and a
prerequisite for the development of effective stereostructure
activity relations, the recently proposed “build/couple/pair”
(B/C/P) strategy has gained some attention.4,5 In the first
phase (build phase), building blocks incorporating defined
stereogenic units and tailored reactive functionalities are
generated asymmetrically. The building blocks are then
assembled (couple phase) through intermolecular bond-forming
processes to yield a complete matrix of stereoisomers of the
main carbon framework, prior to intramolecular joining of
strategically positioned functional groups (pair phase).
We herein report our progress toward a B/C/P pathway that

entails the combinatorial pairwise display of alkene moieties
around an amino alcohol template (Figure 1). The combination
of the Petasis 3-component reaction (Petasis 3-CR) (couple)6,7

and Ru alkylidene-catalyzed ring-closing metathesis (RCM)
(pair)8 would then result in a collection of carbo- and
heterocycles of different sizes and appendage modifications.9

This strategy also opens for the application of a recently
discovered Ru alkylidene-catalyzed tandem RCM/isomer-
ization/cyclization reaction to introduce an extra element of
skeletal diversity in the pair phase (Figure 2).10

All desired olefin-containing components (boronic acid, α-
hydroxy aldehyde, and amine) were readily synthesized in few
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Figure 1. Build/couple/pair strategy combining the Petasis 3-
component reaction with ring-closing metathesis.
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steps.11 Components for the Petasis 3-CR were then matched
so that the resulting amino alcohols contained two olefin
functionalities aligned to undergo Ru-catalyzed ring-closing
metathesis and form small rings. The Petasis 3-CRs were
mediated in a mixture of CH2Cl2 and hexafluoroisopropanol
(HFIP) (Scheme 1; couple phase) as solvent,12 generally giving
the diasteromerically pure anti-amino alcohol products in
decent to good yields (>60%). These synthetic transformations
were conveniently demonstrated with racemic α-hydroxy
aldehydes masked as the corresponding lactols, but most

enantiopure aldehyde components would be accessible from
readily available α-hydroxy carboxylic acid derivatives.13a

For example, the metal-catalyzed asymmetric allylation of
glyoxylic acid derivatives could be an important step (build)
in the generation of a stereochemically complete assembly of

Scheme 1. Couple Phase: Petasis 3-Component Reactions of
Olefin-Functionalized Building Blocksa

aProduct 1i was obtained as a 1:1 diastereomeric mixture of anti-
amino alcohols.

Scheme 2. Pair Phase: Functional-Group Pairing of Alkene-
Containing Amino Alcohols

Figure 2. Mechanism for the Formation of Oxazabicyclooctane 2a.

Table 1. Catalyst and Reaction Conditions for the Selective Formation of Tetrahydroazepines (Selected Results)a

entry catalyst solvent (temp) ratio 1a:3a:2a (1 h)a−c ratio 1a:3a:2a (24 h)a−c

1 Grubbs I CH2Cl2 (rt) NAd 52:48:0
2 Grubbs II CH2Cl2 (rt) NA 1:98:1
3 Hoveyda−Grubbs II CH2Cl2 (rt) NA 17:82:1
4 Grubbs II CH2Cl2 (reflux) 6:73:20 5:68:27
5 Grubbs II toluene (reflux) 3:10:87e,f NA
6 Hoveyda−Grubbs I toluene (reflux) 1:45:54e NA
7 Hoveyda−Grubbs II toluene (reflux) 1:3:96e NA

aConsult the Supporting Information for a full account on all catalyst optimization experiments. bDetermined by RP-HPLC (215 nm). cReaction
mixtures were generally clean (>85% of 1a, 3a, and 2a). dNA: Not available. eReactions run at 0.03 M concentration. fComplex reaction mixture
(<70% of 1a, 3a, and 2a).
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alkene-containing building blocks.13b Notably, the use of trans-
phenylvinylboronic acid enabled the introduction of an alkene
moiety via the boronic acid component (compounds 1k−l).
Products resulting from the reaction of electron-deficient
arylboronic acids (1b, 1g, and 1j) were not surprisingly
obtained in lower yields.
Amino alcohols 1a−b and 1j−m were then subjected to Ru

alkylidene-catalysis (Scheme 2; pair phase). The 5-membered
ring systems 5 and 6, were smoothly obtained (71% and 85%,
respectively) in the presence of Grubbs’ second generation
catalyst (Grubbs II). Disappointingly, diallylamine 1m could
not be transformed into the desired 5-membered pyrrolidine 7.
Even the addition of catalytic amounts of Ti(i-PrO)4, previously
reported to enable the RCM reaction of diallylamines, proved
unsuccessful.14 Substrate 1j was transformed into the 7-
membered RCM product 4 with Grubbs II at slightly elevated
temperature (50 °C), whereas tetrahydroazepines 3a−b could be
efficiently obtained using the same catalyst at room temperature.
An additional mode of skeletal diversification was demonstrated
by subjecting RCM products 3b and 4 to Pd-catalyzed ring-
contraction reactions,15 which afforded two new 5-membered

rings (8 and 9, respectively) in acceptable yields and in a highly
diastereoselective fashion (>10:1 and >8:1, respectively).
We have previously described the Ru alkylidene-mediated

formation of 8-oxa-6-azabicyclo[3.2.1]octane (oxazabicyclooc-
tane) 2a from substrate 1a at elevated temperature (Scheme 2).10

We speculated that the formation of 2a was the result of a
metal-assisted double bond isomerization of the RCM prod-
uct 3a to an iminium intermediate, subsequently trapped by
the tethered O-nucleophile (Figure 2). Although processes
involving tandem RCM/isomerization have been reported,16

the concomitant isomerization to synthetically useful iminium
ions has only been marginally explored.10,17

To provide synthetically useful protocols for the selective for-
mation of tetrahydroazepine and oxazabicyclooctane ring
systems, an extensive optimization study was carried out
(Table 1, selected results), the challenge being to identify
reaction conditions that provide minimal or maximal postmeta-
thesis olefin isomerization.
To this end, a range of ruthenium catalysts, temperatures,

and reactant stoichiometries were thoroughly examined.
When running the reactions at room temperature (entries
1−3), the Grubbs II catalyst was sufficiently efficient for the
RCM reaction, while still keeping formation of the
oxazabicyclooctane at satisfyingly low levels (entry 2). The
results clearly revealed the superiority of the Hoveyda−
Grubbs II catalyst (entry 7) and the necessity of elevated
temperatures (entries 4−7) for the initiation of oxazabicy-
clooctane formation.
In general, the developed protocols proved highly efficient

when applied to a range of diene-containing amino alcohols
(1a−i), as evidenced by the formation of tetrahydroazepines
and oxazabicyclooctanes in good to excellent yields (Table 2).
Compared to our previous findings,10 the conversion of 1a into
oxazabicyclooctane 2a was improved from 63% to 82% when
using method B (Table 2, entry 1). In a few instances,
substrates only reluctantly underwent RCM reaction, neces-
sitating the use of higher reaction temperatures.
In a final stage toward more complex structures, an approach

taking advantage of two consecutive Petasis 3-CRs of a parent
amine was investigated. Allylamine was treated with lactol 10
and trans-phenylvinylboronic acid to give anti-amino alcohol
11, followed by reaction with glyoxal and phenylboronic acid to
provide a tertiary amine as a mixture of diastereomers, which,
upon treatment with DBU, equilibrated to diastereomerically
pure 12 (29% yield, 3 steps).18 Compound 12 was then
acetylated and subjected to RCM to provide bicyclic compound
13 in decent yield (65%, 2 steps).

Table 2. Pair Phase: Selective Formation of Tetrahydro-
azepines and Oxazabicyclooctanes

aIsolated yield after flash column chromatography. bSee Supporting
Information for detailed reaction conditions. cProducts 3i/2i, were
obtained as 1:1 diastereomeric mixtures of anti-amino alcohols/ethers.

Scheme 3. Consecutive Petasis 3-CR and RCM Reactions
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In conclusion, important steps toward a B/C/P strategy
relying on the strategic positioning of olefin moieties around
an amino alcohol template, effectively combining the Petasis 3-
CR (couple) with Ru-catalyzed RCM and isomerization reactions
(pair), have been taken. By mix-matching combinations of olefin-
containing components, this modular strategy rapidly grants
access to skeletally diverse molecules. To provide an element of
skeletal diversification control, catalysts and reaction conditions
for the selective formation of tetrahydroazepines and azabicy-
clooctanes have been developed. In the future, we hope to
bring syn-selective Petasis reactions into the scope of the present
methodology and thereby provide a more complete B/C/P
pathway.
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